THE TEMPERATURE FIELD ARISING WITH THE MOTION
OF A REACTING SPHERE WITH SMALL FINITE PECLET
AND REYNOLDS NUMBERS

Yu. P. Gupalo, Yu. S. Ryazantsev, UDC 536.24.241
and A, T, Chalyuk

A solution is obtained to the problem of the temperature field induced by a surface chemical reaction
outside and inside a spherical particle moving in a liquid at small finite Reynolds numbers. The problem
is solved by the method of coalescing asymptotic expansions [1] in terms of a small thermal Péclet number,
under the assumption that the reaction takes place under diffusion conditions. There has been obtained pre-
viously the concentration field of a reagent [2] around a moving particle on whose surface a chemical re-
action of the first order is taking place, with small finite Reynolds and Péclet numbers. Below, using the
results of [2], there is determined the temperature field outside and inside of a reacting sphere, induced
by the thermal effect of the reaction.

1. Statement of Problem. Method of Solution. We consider a spherical particle moving in a viscous
liquid; on the surface of the particle there takes place a chemical reaction, accompanied by the evolution
(absorption) of heat. At a large distance from the particle the flow of the liquid is assumed to be homoge~
neous, so that the velocity of the flow, the concentration of the reacting substance, and the temperature of
the flow have the constant values U, ¢, and T, respectively. In the neighborhood of the particle, due to the
perturbations which it introduces, the homogeneity of the velocity, concentration, and temperature fields
breaks down. The distribution of the velocities at small finite Reynolds numbers was found in [3, 4], and the
distribution of the concentrations at small finite Reynolds and Péclet numbers in [2]. Based on the results
of [2], under the same conditions we shall find the distributions of the temperature outside and inside of a
particle in the case of small finite values of the thermal Péclet number.

The thermal conductivity equations, in dimensionless variables, for the regions outside and inside a
sphere can be written in the form
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Here T(r, 4) and Ty(r, ) are the temperature distributions in the flow and inside the particle; r is a
radial coordinate, referred tq the radius of the particle a; ¢ is the angle between the radius vector and the
direction of the velocity of the unperturbed flow; A is an axisymmetric spherical Laplace operator; cp is the
heat capacity of the liquid; h is the heat of reaction; y is the thermal diffusivity coefficient; D is the diffusion
coefficient; L is the Lewis number; P, is the thermal Péclet number; ¢ is the dimensionless (referred to
Ua?) flow function.

For the dimensionless flow function we use the internal and external asymptotic expansions obtained
in {3, 4]; these are written in the form
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Here and in what follows, an asterisk below or above denotes internal or external asymptotic expan-
sion, respectively; p is the compressed radial coordinate; ¢ is the Prandtl number.

The boundary conditions expressing the homogeneity of the temperature far from the particle, the
continuity of the temperature and the heat balance at its surface, as well as the boundedness of the temper
ature at the center of the particle have the form

r—soo, ©—0
r=1,  9=0 9
59 oD % M o — ¢ :
r=t, FodT =3 =3 e=5 .
r=0, O < o0 (1.8)

Here § is the ratio of the coefficients of thermal conductivity of the particle A; and the liquid X; £ isthe
degree of progress of the reaction; ¢ is the concentration of the reagent in the flow.

The boundary condition (1.7) contains the value of the normal component of the gradient of the progress
of the reaction at the surface of the particle. To determine this value, we use the results of [2], limiting
ourselves to the case of a reaction taking place in the diffusion region (the reaction rate constant is large
in comparison with the ratio of the diffusion coefficient to the radius of the particle). We obtain
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The above formulated problem (1.1)-(1.9) is close to that considered in [2]. To solve it, as in [2], we
use the method of coalescing asymptotic expansions.

The internal and external asymptotic expansions of the reduced temperature outside of the sphere will
be sought in the form

o0

Py = § o (Px) cp’n(r, B) (110
o* = a"‘"(Px) ™ (p, 1) (1.11)

The asymptotic expansion of the solution inside the sphere, as is indicated by the conditions at the
surface (1.6) and {(1.7), must be sought in a form analogous to (1.10):

= 3} o (P) Dn (r, 1) (1.12)

n==p
With respect to the functions ap(Py ) and o) (PX) it is assumed only that the order of their small~-
ness with respect to Py increases with an increase in the value of n,

The terms of the expansions (1.10), (1.12) will be determined consecutively from Eqgs. (1.1), (1.2) with
the boundary conditions (1.6)-(1.8), taking account of (1.9); the flow function entering into (1.1) is given by
the internal expansion (1.3).

183



We determine the terms of the expansion (1.11) from Eq. (1.1) and condition (1.5), written in external
variables (p = rPy, ¢* = szXZ):

_tamwrey . *
AR = w5 0o ¢ 0 ; (1.13)
Here A* is an axisymmetric Laplace operator, obtained from A by the replacement of r by p; the func-
tion ¥* = P*(p, u) is determined by the expansion (1.4).

The arbitrary constants, which remain indeterminate in each stage of the solution of the problems
(1.1)~(1.3), (1.6)-(1.9),and (1.13), (1.4), are determined by coalescence of the expansions (1.10) and (1.11).

2. Zero and First Approximations. The construction of the solution starts with determination of the
zero term of the external expansion. Obviously, the problem (1.13), (1.4) is satisfied by the solution

¢® =0 @.1)
For the zero terms of the expansions (1.10), (1.12), from (1.1)-(1.3), (1.6)-(1.9) with Px-= 0 we obtain
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Here Py, (u) are Legendre polynomials.

Determining the constants agyy, and bym by the asymptotic coalescence of ¢, with q,(o) ,» we obtain

P =11 Qy=1 (2.3)

It is obvious that expressions (2.3) describe the temperature distributions outside and inside of a sta-
tionary spherical particle with a surface nonisothermal reaction taking place in the diffusion region.

Writing ¢ as a function of the external variable p, we find that in the external expansion, o) = Py.
Then, to determine the first approximation 99(1) for the external expansion we obtain from (1.13), (1.4) a
problem identical to that considered earlier [2] in finding £ (1), With the coalescence of (1) and ¢, it is
evident from (2.3) that ¢, differs from the corresponding function £, from [2] only by a constant with ™1,
Therefore, we can immediately write ¢ (1) in the form

‘ M = p~texp [Y/,0(n — 1)} 2.9
Going over in (2.4) to the internal variable r and expanding ¢(!) in a series in terms of Py, we find

that in the external expansion,o; = Py. To determine ¢, and ¢y, in a two-term internal expansion we ob-
tain from (1.1)-(1.3), (1.6)-(1.9) the following problem:

1 3 1
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r == 0, q)l < o0
The solution of problem (2.5) has the form
131 o
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O —Vmagm+@m+m+4+1)bm=0 (m>2 2.6)
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By coalescing ¢y = ¢+ Py @y with o*1) = o + ngo(i), we determine the constants ayy, and bym. We

obtain
4 L 33486—L 1
w=—g gtz +sr S e @.7
) 1 3
= E=) (7 —Fr5H) 2.8)

3. Third and Fourth Approximations. The two-term internal expansion, written in external variables,
shows that the three-term external expansion has the form

@) = 9O - Pyp) 4 Pyp® (3.1

For @, from (1.13), using (1.4), (2.1), (2.4), we obtain

= 5 (25— g p )
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The problem (3.2) coincides with that considered previously [2]. Using the solution obtained in [2]
and determining the unknown constants by coalescing (p*(z) (o, ) and @y (r, u), we find an expression for
the asymptotic curve ¢®) (o, u):

o (p, p) = (L—~u) ——~§—lnp+C(L,c) + (3.3)
+ {L+E“(T+’5—1—ogz)91np]u-%(l +1%5)3”

Formula (3.3) shows, in particular, that there is a logarithmic singularity in the second approximation

for the external expansion. Going over in (3.3) to an internal variable, we find the coefficient ¢, in the in-
ternal expansion (1.10);

g (Px) = Py?ln Py

From (1.10), (1.12), (1.1)~(1.3}, (1.6)~- (1 9), for ¢, and ¥, relationships analogous to relationships (2.2)
{with the replacements @y —~aypyy, by — bym), with the sole difference that by, = Y, 12, are obtained. There-
fore, after coalescence of ¢y, and ¢*®, we immediately obtain

Py = 1/5 (Lzl r— 1), (D2 = 1/."2- ('L2 hat 1)

Simultaneously with the second approximation, relationship (3.3) makes it possible to obtain also the
third approximation for the internal expansion. It follows from (3.3) that ag=P 2. The function @4(r, 4}
satisfies the equation

2
Agg= D\ Yn(r) Pu(p) (3.4)
n=0
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The general solution of Eq. (3.4) is
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Coalescing ¢«3= ¢+ Pypy +P In Py @y + PX g for r —= and the external expansion p*@) = qu)(i) +
Px2<p( 2) at p—0, we find the constants Bgm:

aw=C(L0), o= Gn=0 (n>2) (3.6)

From (1.2), (1.12), taking account of (1.6), (1.8), for a term of the order sz in the asymptotic expan-
sion of the solution within the sphere we have

= 3 (Baim (1) + tom + bom] 7P (1) a0

m==0

Boundary condition (1.7) now permits determining the constants byy,. By virtue of (3.5)~(3.7), (1.9)
we obtain the relationships

%D' () — by = — 2= (Q-+ln L)
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33 13
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Hence
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Thus, the third term of the internal expansion has the form (3.5), where the coefficients a3y, bym are given
by the formulas (3.6), (3.8), respectively.

4, The Temperature Field Outside and Inside of a Particle. Heat Flux at the Surface of a Particle.
The expression for the temperature distribution in the flow surrounding the particle has the form (near the
particle)

1 1 L 1 3 3 1)
Gu =t P [t (- tar g + (4.1)

2 .
+ PRI Py (— o ) + PR — 2+ D [Boum () + bamr 1] P () }

m=0
Here @3 m(r) and bgy are determined using formulas (3.5) and (3.8).
The temperature field inside the particle is
2
1 3 1
D=1+ Py(L— 1)(—2*—'—8‘2—1‘5‘5) +—2—_'Px2 In Py (L* —1) + pxzméoAsmrum(P«) 4.2)
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With L= 1, as is easily verified, & = 1. This confirms the fact that in the case of similarity of the
concentration and temperature fields the temperature of the particle should remain constant,

The thermal Nusselt number is determined by the formula

1

N=~_Slaal;

dp (4.3)

r=1

A calculation shows that the Nusselt number can be written in the following form, coinciding with the
corresponding expression of [2], with

k>0 :N=2+ P+ PInP + P¥Q

where Q is determined by (1.9); P= PX L.

Figure 1 shows the distribution of the local heat flux on a spherical particle as a function of the Lewis
number. The local heat flux on the particle is equal to

, 29 L 9 3 346—L L2
]=——5;~T=1=1+PX[T——<T—T 216 )M]"“_Z'PXZIHPX“F
L2 3 L. 3 3L 32
+PXZ{T(Q+1“L)”4”‘“—(2+6){‘3(_4‘+m_1)‘ﬁ”s?—T]”“
3 7294118 — 7L 135 I* ;33 43 17 3u2—1
BRI 5_1205‘*‘“1?(7’5_51:‘)‘} 2 }

In addition to the Lewis number, there enter here as parameters also the Prandtl number o=/, the
Péclet number, and the ratio of the thermal conductivities of the sphere and the surrounding medium. The
values of o and of the diffusional Péclet number are fixed; 0 =1, P=1/,. The L numbers are taken within the
limits from 0.5 to 2, which corresponds to the real values for many gases. Then

Py=P|L=1;L
f=1.163 +0.425Q — P,0.3750 — P2 [(fisl — ¥/ p +0.034 (32 —1)2] &t  B8—oo

7 =1.163 4-0.125Q — 0.1875 — 0.25 [ (%/6aL ™2 — %/ 1) 1t |- 3/128 (337 — 18/sL7) (392 — 1)/2]
. at §=0

The curves show that, with 6—, at the point where the flow encounters the particle (9 =») the heat
flux at first rises with an increase in the Lewis number, then, when the Lewis number becomes greater than
unity, starts to fall slowly. This is evident also from the expression for j with §—~e: 8j/8L >0 at L=1;
8j/8L <0 at L=2.

In the front part there exists a value of the angle #~103° at which j is practically independent of the
Lewis number for all values of .= 1. At the rear point (#=0) the density of the heat flux falls with an in-
crease in L.

In the case 5§ =0 the local heat flux to the particle decreases with an increase in L,and for each in-
dividual value of L. it decreases smoothly from its greatest value at the point of impact of the flow (6 =) to
its lowest value at the rear point (9 = 0).
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